531 research outputs found

    Evaluating ecosystem response to oyster restoration and nutrient load reduction with a multispecies bioenergetics model

    Get PDF
    Many of the world\u27s coastal ecosystems are impacted by multiple stressors each of which may be subject to different management strategies that may have overlapping or even conflicting objectives. Consequently, management results may be indirect and difficult to predict or observe. We developed a network simulation model intended specifically to examine ecosystem-level responses to management and applied this model to a comparison of nutrient load reduction and restoration of highly reduced stocks of bivalve suspension feeders (eastern oyster, Crassostrea virginica) in an estuarine ecosystem (Chesapeake Bay, USA). Model results suggest that a 50% reduction in nutrient inputs from the watershed will result in lower phytoplankton production in the spring and reduced delivery of organic material to the benthos that will limit spring and summer pelagic secondary production. The model predicts that low levels of oyster restoration will have no effect in the spring but does result in a reduction in phytoplankton standing stocks in the summer. Both actions have a negative effect on pelagic secondary production, but the predicted effect of oyster restoration is larger. The lower effect of oysters on phytoplankton is due to size-based differences infiltration efficiency and seasonality that result in maximum top-down grazer control of oysters at a time when the phytoplankton is already subject to heavy grazing. These results suggest that oyster restoration must be achieved at levels as much as 25-fold present biomass to have a meaningful effect on phytoplankton biomass and as much as 50-fold to achieve effects similar to a 50% nutrient load reduction. The unintended effect of oyster restoration at these levels on other consumers represents a trade-off to the desired effect of reversing eutrophication

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy

    Evolution of Microscopic Localization in Graphene in a Magnetic Field from Scattering Resonances to Quantum Dots

    Full text link
    Graphene is a unique two-dimensional material with rich new physics and great promise for applications in electronic devices. Physical phenomena such as the half-integer quantum Hall effect and high carrier mobility are critically dependent on interactions with impurities/substrates and localization of Dirac fermions in realistic devices. We microscopically study these interactions using scanning tunneling spectroscopy (STS) of exfoliated graphene on a SiO2 substrate in an applied magnetic field. The magnetic field strongly affects the electronic behavior of the graphene; the states condense into welldefined Landau levels with a dramatic change in the character of localization. In zero magnetic field, we detect weakly localized states created by the substrate induced disorder potential. In strong magnetic field, the two-dimensional electron gas breaks into a network of interacting quantum dots formed at the potential hills and valleys of the disorder potential. Our results demonstrate how graphene properties are perturbed by the disorder potential; a finding that is essential for both the physics and applications of graphene.Comment: to be published in Nature Physic

    Social problems in oncology

    Get PDF
    A study was undertaken to describe, evaluate and categorise the social problems experienced by cancer patients. Ninety-six adult cancer patients at all stages of disease participated in either a telephone focus group discussion, a face to face focus group or an individual interview which were tape recorded and transcribed. Six experts analysed the transcripts. A total of 32 social problems were identified categorized under eight headings plus four single items. The categories were: problems with (1) managing in the home, (2) health and welfare services, (3) finances, (4) employment, (5) legal matters, (6) relationships, (7) sexuality and body image and (8) recreation. Problems with relationships and communication were the most frequently reported with financial, employment, body image and domestic problems also being widely endorsed. Female groups, younger patient groups and groups where the aim of treatment was palliative reported more social problems than other groups. Social problems are common and important to cancer patients. The social problems identified in this study will contribute to an item pool generated for developing a Social Problems Inventory that may be included in patient centred assessment as part of routine oncology practice

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Measurement of Exclusive B Decays to Final States Containing a Charmed Baryon

    Get PDF
    Using data collected by the CLEO detector in the Upsilon(4S) region, we report new measurements of the exclusive decays of B mesons into final states of the type Lambda_c^+ p-bar n(pi), where n=0,1,2,3. We find signals in modes with one, two and three pions and an upper limit for the two body decay Lambda_c^+ pbar. We also make the first measurements of exclusive decays of B mesons to Sigma_c p-bar n(pi), where n=0,1,2. We find signals in modes with one and two pions and an upper limit for the two body decay Sigma_c p-bar. Measurements of these modes shed light on the mechanisms involved in B decays to baryons.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Smoking trends among adolescents from 1990 to 2002 in ten European countries and Canada

    Get PDF
    BACKGROUND: Daily smoking adolescents are a public health problem as they are more likely to become adult smokers and to develop smoking-related health problems later on in their lives. METHODS: The study is part of the four-yearly, cross-national Health Behaviour in School-aged Children study, a school-based survey on a nationally representative sample using a standardised methodology. Data of 4 survey periods are available (1990–2002). Gender-specific daily smoking trends among 14–15 year olds are examined using logistic regressions. Sex ratios are calculated for each survey period and country. Interaction effects between period and gender are examined. RESULTS: Daily smoking prevalence in boys in 2002 ranges from 5.5% in Sweden to 20.0% in Latvia. Among girls, the daily smoking prevalence in 2002 ranges from 8.9% in Poland to 24.7% in Austria. Three daily smoking trend groups are identified: countries with a declining or stagnating trend, countries with an increasing trend followed by a decreasing trend, and countries with an increasing trend. These trend groups show a geographical pattern, but are not linked to smoking prevalence. Over the 4 surveys, the sex ratio has changed in Belgium, Switzerland, and Latvia. CONCLUSION: Among adolescents in Europe, three groups of countries in a different stage of the smoking epidemic curve can be identified, with girls being in an earlier stage than boys. In 2002, large differences in smoking prevalence between the countries have been observed. This predicts a high mortality due to smoking over 20–30 years for some countries, if no policy interventions are taken

    The Earliest Post-Paleozoic Freshwater Bivalves Preserved in Coprolites from the Karoo Basin, South Africa

    Get PDF
    Background: Several clades of bivalve molluscs have invaded freshwaters at various times throughout Phanerozoic history. The most successful freshwater clade in the modern world is the Unionoida. Unionoids arose in the Triassic Period, sometime after the major extinction event at the End-Permian boundary and are now widely distributed across all continents except Antarctica. Until now, no freshwater bivalves of any kind were known to exist in the Early Triassic. Principal Findings: Here we report on a faunule of two small freshwater bivalve species preserved in vertebrate coprolites from the Olenekian (Lower Triassic) of the Burgersdorp Formation of the Karoo Basin, South Africa. Positive identification of these bivalves is not possible due to the limited material. Nevertheless they do show similarities with Unionoida although they fall below the size range of extant unionoids. Phylogenetic analysis is not possible with such limited material and consequently the assignment remains somewhat speculative. Conclusions: Bivalve molluscs re-invaded freshwaters soon after the End-Permian extinction event, during the earliest part of the recovery phase during the Olenekian Stage of the Early Triassic. If the specimens do represent unionoids then these Early Triassic examples may be an example of the Lilliput effect. Since the oldest incontrovertible freshwater unionoids are also from sub-Saharan Africa, it is possible that this subcontinent hosted the initial freshwater radiation of the Unionoida. This find also demonstrates the importance of coprolites as microenvironments of exceptional preservation that contai

    Keeping an eye on noisy movements: On different approaches to perceptual-motor skill research and training

    Get PDF
    Contemporary theorising on the complementary nature of perception and action in expert performance has led to the emergence of different emphases in studying movement coordination and gaze behaviour. On the one hand, coordination research has examined the role that variability plays in movement control, evidencing that variability facilitates individualised adaptations during both learning and performance. On the other hand, and at odds with this principle, the majority of gaze behaviour studies have tended to average data over participants and trials, proposing the importance of universal 'optimal' gaze patterns in a given task, for all performers, irrespective of stage of learning. In this article, new lines of inquiry are considered with the aim of reconciling these two distinct approaches. The role that inter- and intra-individual variability may play in gaze behaviours is considered, before suggesting directions for future research
    corecore